手机版 | 网站导航
观察家网 > 体育 >

百度教育云平台(百度教育)

互联网 | 2023-03-19 12:21:45


(资料图片)

一、题文

对于平面直角坐标系:xOy内任意一点P.过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(-2,)的垂点距离分别为______,______,______.(2)点P在以Q(,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h的取值范围;(3)点T为直线l:y=x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.

二、解答

2 4

三、分析

解:(1)如图1,点A(2,0)的垂点距离为OA=2,连接OB,过点B作BN⊥x轴于M,作BN⊥y轴于N,∴∠BNO=∠BMO=90°,∵∠MON=90°,∴∠MON=∠BMO=∠BNO=90°,∴四边形OMNB是矩形,∴MN=OB,∴点B(4,4)的垂点距离为MN=OB==4,同理:点C的垂点距离为=,故答案为:2,4,;(2)如图2,过点P作PM⊥x轴于M,PN⊥y轴于N,连接OP,由(1)知,点P的垂点距离h=OP,∵点Q的坐标为(,1),∴OQ=2,∵PQ-OQ≤OP≤OQ+PQ,∴3-2≤OP≤3+2,∴1≤OP≤5,∴1≤h≤5;(3)如图3,设直线l与x轴,y轴的交点为A,B,针对于直线y=x+6,令x=0,则y=6,∴B(0,6),∴OB=6,令y=0,则x+6=0,∴x=-2,∴A(-2,0),∴OA=2,在Rt△AOB中,tan∠OAB==,∴∠OAB=60°,过点O作OM⊥l于M,∴AM=OA•cos∠OAB=2•cos60°=,过点M,N分别作x轴的垂线,垂足分别为C,D,同理:AC=,即OC=,∵OA=ON,∠BAO=60°,∴△AON是等边三角形,∴OD=OA=,∴t=-或-≤t<0.(1)先判断出MN=OB,即可用两点间的距离公式求解;(2)先判断出h=OP,再判断出OQ+PQ≤OP≤OQ+PQ,即可得出结论;(3)先求出点A,B坐标,进而求出OA=OB,再找出分界点,利用锐角三角函数求解即可得出结论.此题是圆的综合题,主要考查了矩形的判定和性质,三角形的三边关系,等边三角形的判定和性质,锐角三角函数,找出分界点是解本题的关键.

本文到此结束,希望对大家有所帮助。

标签:

  • 标签:中国观察家网,商业门户网站,新闻,专题,财经,新媒体,焦点,排行,教育,热点,行业,消费,互联网,科技,国际,文化,时事,社会,国内,健康,产业资讯,房产,体育。

上一篇:

下一篇:

相关推荐